Saturday, 7 July 2012

Tygacil 50mg powder for solution for infusion





1. Name Of The Medicinal Product



Tygacil® 50 mg powder for solution for infusion.


2. Qualitative And Quantitative Composition



Each 5 ml Tygacil vial contains 50 mg of tigecycline. After reconstitution, 1 ml contains 10 mg of tigecycline.



For a full list of excipients, see section 6.1.



3. Pharmaceutical Form



Powder for solution for infusion (powder for infusion).



Lyophilised orange cake or powder.



4. Clinical Particulars



4.1 Therapeutic Indications



Tygacil is indicated in adults for the treatment of the following infections (see sections 4.4 and 5.1):



• Complicated skin and soft tissue infections, excluding diabetic foot infections (see section 4.4)



• Complicated intra-abdominal infections



Tygacil should be used only in situations where it is known or suspected that other alternatives are not suitable (see sections 4.4 and 4.8).



Consideration should be given to official guidance on the appropriate use of antibacterial agents.



4.2 Posology And Method Of Administration



Posology



The recommended dose for adults is an initial dose of 100 mg followed by 50 mg every 12 hours for 5 to 14 days.



The duration of therapy should be guided by the severity, site of the infection, and the patient's clinical response.



Hepatic insufficiency



No dosage adjustment is warranted in patients with mild to moderate hepatic impairment (Child Pugh A and Child Pugh B).



In patients with severe hepatic impairment (Child Pugh C), the dose of Tygacil should be reduced to 25 mg every 12 hours following the 100 mg loading dose. Patients with severe hepatic impairment (Child Pugh C) should be treated with caution and monitored for treatment response (see sections 4.4 and 5.2).



Renal insufficiency



No dosage adjustment is necessary in patients with renal impairment or in patients undergoing haemodialysis (see section 5.2).



Elderly patients



No dosage adjustment is necessary in elderly patients (see section 5.2).



Paediatric population



The safety and efficacy of Tygacil in children below 18 years have not yet been established. (see section 4.4). Currently available data are described in section 5.2, but no recommendation on a posology can be made.



Method of administration:



Tygacil is administered only by intravenous infusion over 30 to 60 minutes (see section 6.6).



For instructions on reconstitution & dilution of the medicinal product before administration, see section 6.6.



4.3 Contraindications



Hypersensitivity to the active substance or to any of the excipients. Patients hypersensitive to tetracycline class antibiotics may be hypersensitive to tigecycline.



4.4 Special Warnings And Precautions For Use



In clinical studies in complicated skin and soft tissue infections, complicated intra-abdominal infections, diabetic foot infections, nosocomial pneumonia and studies in resistant pathogens, a numerically higher mortality rate among Tygacil treated patients has been observed as compared to the comparator treatment. The causes of these findings remain unknown, but poorer efficacy and safety than the study comparators cannot be ruled out.



Patients who develop super-infections, in particular nosocomial pneumonia, appear to be associated with poorer outcomes. Patients should be closely monitored for the development of super-infection. If a focus of infection other than cSSTI or cIAI is identified after initiation of Tygacil therapy consideration should be given to instituting alternative antibacterial therapy that has been demonstrated to be efficacious in the treatment of the specific type of infection(s) present.



Tygacil is not approved for clinical indications other than complicated skin and soft tissue infections, and complicated intra-abdominal infections. The use of Tygacil in non-approved indications is not recommended.



Anaphylaxis/anaphylactoid reactions, potentially life-threatening, have been reported with tigecycline (see sections 4.3 and 4.8).



Cases of liver injury with a predominantly cholestatic pattern have been reported in patients receiving tigecycline treatment, including some cases of hepatic failure with a fatal outcome. Although hepatic failure may occur in patients treated with tigecycline due to the underlying conditions or concomitant medicinal products, a possible contribution of tigecycline should be considered (see section 4.8).



Glycylcycline class antibiotics are structurally similar to tetracycline class antibiotics. Tigecycline may have adverse reactions similar to tetracycline class antibiotics. Such reactions may include photosensitivity, pseudotumor cerebri, pancreatitis, and anti-anabolic action which has led to increased BUN, azotaemia, acidosis, and hyperphosphataemia (see section 4.8).



Acute pancreatitis, which can be serious, has occurred (frequency: uncommon) in association with tigecycline treatment (see section 4.8). The diagnosis of acute pancreatitis should be considered in patients taking tigecycline who develop clinical symptoms, signs, or laboratory abnormalities suggestive of acute pancreatitis. Most of the reported cases developed after at least one week of treatment. Cases have been reported in patients without known risk factors for pancreatitis. Patients usually improve after tigecycline discontinuation. Consideration should be given to the cessation of the treatment with tigecycline in cases suspected of having developed pancreatitis.



Experience in the use of tigecycline for treatment of infections in patients with severe underlying diseases is limited.



In clinical trials in complicated skin and soft tissue infections, the most common type of infection in tigecycline treated-patients was cellulitis (59 %), followed by major abscesses (27.5 %). Patients with severe underlying disease, such as those that were immunocompromised, patients with decubitus ulcer infections, or patients that had infections requiring longer than 14 days of treatment (for example, necrotizing fasciitis), were not enrolled. A limited number of patients were enrolled with co-morbid factors such as diabetes (20 %), peripheral vascular disease (7 %), intravenous drug abuse (2 %), and HIV-positive infection (1 %). Limited experience is also available in treating patients with concurrent bacteraemia (3 %). Therefore, caution is advised when treating such patients. The results in a large study in patients with diabetic foot infection, showed that tigecycline was less effective than comparator, therefore, tigecycline is not recommended for use in these patients (see section 4.1)



In clinical trials in complicated intra-abdominal infections, the most common type of infection in tigecycline treated-patients was complicated appendicitis (51 %), followed by other diagnoses less commonly reported such as complicated cholecystitis (14 %), intra-abdominal abscess (10 %), perforation of intestine (10 %) and gastric or duodenal ulcer perforation less than 24 hours (5 %). Of these patients, 76 % had associated diffuse peritonitis (surgically-apparent peritonitis). There were a limited number of patients with severe underlying disease such as immunocompromised patients, patients with APACHE II scores > 15 (4 %), or with surgically apparent multiple intra-abdominal abscesses (10 %). Limited experience is also available in treating patients with concurrent bacteraemia (6 %). Therefore, caution is advised when treating such patients.



Consideration should be given to the use of combination antibacterial therapy whenever tigecycline is to be administered to severely ill patients with complicated intra-abdominal infections (cIAI) secondary to clinically apparent intestinal perforation or patients with incipient sepsis or septic shock (see section 4.8).



The effect of cholestasis in the pharmacokinetics of tigecycline has not been properly established. Biliary excretion accounts for approximately 50 % of the total tigecycline excretion. Therefore, patients presenting with cholestasis should be closely monitored.



Prothrombin time or other suitable anticoagulation test should be used to monitor patients if tigecycline is administered with anticoagulants (see section 4.5).



Pseudomembranous colitis has been reported with nearly all antibacterial agents and may range in severity from mild to life threatening. Therefore, it is important to consider this diagnosis in patients who present with diarrhoea during or subsequent to the administration of any antibacterial agent (see section 4.8).



The use of tigecycline may result in overgrowth of non-susceptible organisms, including fungi. Patients should be carefully monitored during therapy. If super infection occurs, appropriate measures should be taken (see section 4.8).



Results of studies in rats with tigecycline have shown bone discolouration. Tigecycline may be associated with permanent tooth discolouration in humans if used during tooth development (see section 4.8).



Paediatric population



Tygacil should not be used in children under 8 years of age because of teeth discolouration, and is not recommended in adolescents below 18 years due to the lack of data on safety and efficacy (see sections 4.2 and 4.8).



4.5 Interaction With Other Medicinal Products And Other Forms Of Interaction



Interaction studies have only been performed in adults.



Concomitant administration of tigecycline and warfarin (25 mg single-dose) to healthy subjects resulted in a decrease in clearance of R-warfarin and S-warfarin by 40 % and 23 %, and an increase in AUC by 68 % and 29 %, respectively. The mechanism of this interaction is still not elucidated. Available data does not suggest that this interaction may result in significant INR changes. However, since tigecycline may prolong both prothrombin time (PT) and activated partial thromboplastin time (aPTT), the relevant coagulation tests should be closely monitored when tigecycline is co-administered with anticoagulants (see section 4.4). Warfarin did not affect the pharmacokinetic profile of tigecycline.



Tigecycline is not extensively metabolised. Therefore, clearance of tigecycline is not expected to be affected by active substances that inhibit or induce the activity of the CYP450 isoforms. In vitro, tigecycline is neither a competitive inhibitor nor an irreversible inhibitor of CYP450 enzymes (see section 5.2).



Tigecycline in recommended dosage did not affect the rate or extent of absorption, or clearance of digoxin (0.5 mg followed by 0.25 mg daily) when administered in healthy adults. Digoxin did not affect the pharmacokinetic profile of tigecycline. Therefore, no dosage adjustment is necessary when tigecycline is administered with digoxin.



In in vitro studies, no antagonism has been observed between tigecycline and other commonly used antibiotic classes.



Concurrent use of antibiotics with oral contraceptives may render oral contraceptives less effective.



4.6 Pregnancy And Lactation



Pregnancy



There are no adequate data from the use of tigecycline in pregnant women. Results from animal studies have shown tigecycline may cause foetal harm when administered during pregnancy (see section 5.3). The potential risk for humans is unknown. As it is known for tetracycline class antibiotics, tigecycline may also induce permanent dental defects (discolouration and enamel defects) and a delay in ossification processes in foetuses, exposed in utero during the last half of gestation, and in children under eight years of age due to the enrichment in tissues with a high calcium turnover and formation of calcium chelate complexes (see section 4.4). Tigecycline should not be used during pregnancy unless clearly necessary.



Breastfeeding



It is not known whether this medicinal product is excreted in human milk. In animal studies tigecycline is excreted into milk of lactating rats. Because a potential risk to the breast-feeding infant cannot be ruled out, when treating with tigecycline, caution should be exercised and interruption of breast-feeding should be considered (see section 5.3).



Fertility



Tigecycline did not affect mating or fertility in rats at exposures up to 4.7 times the human daily dose based on AUC. In female rats, there were no compound-related effects on ovaries or oestrus cycles at exposures up to 4.7 times the human daily dose based on AUC.



4.7 Effects On Ability To Drive And Use Machines



No studies on the effects of tigecycline on the ability to drive and use machines have been performed. Dizziness may occur and this may have an effect on driving and use of machines (see section 4.8).



4.8 Undesirable Effects



a. Summary of safety profile



The total number of patients treated with tigecycline in Phase 3 clinical studies was 1415. Adverse reactions were reported in approximately 41 % of patients treated with tigecycline. Treatment was discontinued due to adverse reactions in 5 % of patients.



In clinical trials, the most common drug-related treatment emergent adverse reactions were reversible nausea (20 %) and vomiting (14 %), which usually occurred early (on treatment days 1-2) and were generally mild or moderate in severity.



Adverse reactions reported with Tygacil, including clinical trials and post-marketing experience, are listed below.



Frequency categories are expressed as: Very common (



For adverse reactions identified from post-marketing experience with Tygacil derived from spontaneous reports for which the frequency cannot be estimated, the frequency grouping is categorized as not known.



b. Tabulated summary of adverse reactions



Infections and infestations:



Common: Pneumonia, abscess, infections



Uncommon: Sepsis/septic shock



Blood and the lymphatic system disorders:



Common: Prolonged activated partial thromboplastin time (aPTT), Prolonged prothrombin time (PT)



Uncommon: Increased International Normalised Ratio (INR)



Not known: thrombocytopenia



Immune system disorders:



Not known: Anaphylaxis/anaphylactoid reactions (see sections 4.3 and 4.4)



Metabolism and nutrition disorders:



Common: Hypoglycaemia



Uncommon: Hypoproteinaemia



Nervous system disorders:



Common: Dizziness



Vascular disorders:



Common: Phlebitis



Uncommon: Thrombophlebitis



Gastrointestinal disorders:



Very common: Nausea, vomiting, diarrhoea



Common: Abdominal pain, dyspepsia, anorexia



Uncommon: Acute pancreatitis (see section 4.4)



Hepato-biliary disorders:



Common: Elevated aspartate aminotransferase (AST) in serum, and elevated alanine aminotransferase (ALT) in serum, hyperbilirubinaemia



Uncommon: Jaundice, liver injury, mostly cholestatic



Not known: Hepatic failure (see section 4.4)



Skin and subcutaneous tissue disorders:



Common: Pruritus, rash



Not known: Severe skin reactions, including Stevens-Johnson Syndrome



General disorders and administration site conditions:



Common: Headache



Uncommon: Injection site reaction, injection site inflammation, injection site pain, injection site oedema, injection site phlebitis



Investigations:



Common: Elevated amylase in serum, increased blood urea nitrogen (BUN)



c. Description of selected adverse reactions



Antibiotic Class Effects:



Pseudomembranous colitis which may range in severity from mild to life threatening (see section 4.4)



Overgrowth of non-susceptible organisms, including fungi (see section 4.4)



Tetracycline Class Effects:



Glycylcycline class antibiotics are structurally similar to tetracycline class antibiotics. Tetracycline class adverse reactions may include photosensitivity, pseudotumour cerebri, pancreatitis, and anti-anabolic action which has led to increased BUN, azotaemia, acidosis, and hyperphosphataemia (see section 4.4).



Tigecycline may be associated with permanent tooth discolouration if used during tooth development (see section 4.4).



In Phase 3 clinical studies, infection-related serious adverse events were more frequently reported for subjects treated with tigecycline (6.7 %) vs comparators (4.6 %). Significant differences in sepsis/septic shock with tigecycline (1.5 %) vs comparators (0.5 %) were observed.



AST and ALT abnormalities in Tygacil-treated patients were reported more frequently in the post therapy period than in those in comparator-treated patients, which occurred more often on therapy.



In all Phase 3 and 4 (cSSSI and cIAI) studies, death occurred in 2.4 % (54/2216) of patients receiving tigecycline and 1.7% (37/2206) of patients receiving comparator drugs.



Paediatric population



Very limited safety data were available from a multiple dose PK study (see section 5.2). No new or unexpected safety concerns were observed with tigecycline in this study.



4.9 Overdose



No specific information is available on the treatment of overdosage. Intravenous administration of tigecycline at a single dose of 300 mg over 60 minutes in healthy volunteers resulted in an increased incidence of nausea and vomiting. Tigecycline is not removed in significant quantities by haemodialysis.



5. Pharmacological Properties



5.1 Pharmacodynamic Properties



Pharmacotherapeutic group: Antibacterials for systemic use, Tetracyclines, ATC code: J01AA12.



Mode of action



Tigecycline, a glycylcycline antibiotic, inhibits protein translation in bacteria by binding to the 30S ribosomal subunit and blocking entry of amino-acyl tRNA molecules into the A site of the ribosome. This prevents incorporation of amino acid residues into elongating peptide chains.



In general, tigecycline is considered bacteriostatic. At 4 times the minimum inhibitory concentration (MIC), a 2-log reduction in colony counts was observed with tigecycline against Enterococcus spp., Staphylococcus aureus, and Escherichia coli.



Mechanism of resistance



Tigecycline is able to overcome the two major tetracycline resistance mechanisms, ribosomal protection and efflux. Cross-resistance between tigecycline and minocycline-resistant isolates among the Enterobacteriacae due to multi-drug resistance (MDR) efflux pumps has been shown. There is no target-based cross-resistance between tigecycline and most classes of antibiotics.



Tigecycline is vulnerable to chromosomally-encoded multi-drug efflux pumps of Proteeae and Pseudomonas aeruginosa. Pathogens of the family Proteeae (Proteus spp., Providencia spp., and Morganella spp.) are generally less susceptible to tigecycline than other members of the Enterobacteriaceae.Decreased susceptibility in both groups has been attributed to the overexpression of the non-specific AcrAB multi-drug efflux pump. Decreased susceptibility in Acinetobacter baumannii has been attributed to the overexpression of the AdeABC efflux pump.



Breakpoints



Minimum inhibitory concentration (MIC) breakpoints established by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) are as follows:



Staphylococcus spp. S



Streptococcus spp. other than S. pneumoniae S



Enterococcus spp. S



Enterobacteriaceae S (^) mg/L and R > 2 mg/L



(^)Tigecycline has decreased in vitro activity against Proteus, Providencia, and Morganella spp.



For anaerobic bacteria there is clinical evidence of efficacy in polymicrobial intra-abdominal infections, but no correlation between MIC values, PK/PD data and clinical outcome. Therefore, no breakpoint for susceptibility is given. It should be noted that the MIC distributions for organisms of the genera Bacteroides and Clostridium are wide and may include values in excess of 2 mg/L tigecycline.



There is limited evidence of the clinical efficacy of tigecycline against enterococci. However, polymicrobial intra-abdominal infections have shown to respond to treatment with tigecycline in clinical trials.



Susceptibility



The prevalence of acquired resistance may vary geographically and with time for selected species, and local information on resistance is desirable, particularly when treating severe infections. As necessary, expert advice should be sought when the local prevalence of resistance is such that the utility of the agent in at least some types of infections is questionable.













Pathogen




Commonly Susceptible Species



Gram-positive Aerobes


Enterococcus spp.†



Staphylococcus aureus*



Staphylococcus epidermidis



Staphylococcus haemolyticus



Streptococcus agalactiae*



Streptococcus anginosus group* (includes S. anginosus, S. intermedius and S. constellatus)



Streptococcus pyogenes*



Viridans group streptococci



Gram-negative Aerobes



Citrobacter freundii*



Citrobacter koseri



Escherichia coli*



Klebsiella oxytoca*



Anaerobes



Clostridium perfringens



Peptostreptococcus spp. †



Prevotella spp.




 




Species for which acquired resistance may be a problem



Gram-negative Aerobes


Acinetobacter baumannii



Burkholderia cepacia



Enterobacter aerogenes



Enterobacter cloacae*



Klebsiella pneumoniae*



Morganella morganii



Proteus spp.



Providencia spp.



Serratia marcescens



Stenotrophomonas maltophilia



Anaerobes



Bacteroides fragilis group†




 




Inherently resistant organisms



Gram-negative Aerobes


Pseudomonas aeruginosa



* denotes species against which it is considered that activity has been satisfactorily demonstrated in clinical studies.



† see section 5.1, Breakpoints above.



5.2 Pharmacokinetic Properties



Absorption



Tigecycline is administered intravenously and therefore has 100 % bioavailability.



Distribution



The in vitro plasma protein binding of tigecycline ranges from approximately 71 % to 89 % at concentrations observed in clinical studies (0.1 to 1.0 μg/mL). Animal and human pharmacokinetic studies have demonstrated that tigecycline readily distributes to tissues.



In rats receiving single or multiple doses of 14C-tigecycline, radioactivity was well distributed to most tissues, with the highest overall exposure observed in bone marrow, salivary glands, thyroid gland, spleen, and kidney. In humans, the steady-state volume of distribution of tigecycline averaged 500 to 700 L (7 to 9 L/kg), indicating that tigecycline is extensively distributed beyond the plasma volume and concentrates into tissues.



No data are available on whether tigecycline can cross the blood-brain barrier in humans.



In clinical pharmacology studies using the therapeutic dosage regimen of 100 mg followed by 50 mg q12h, serum tigecycline steady-state Cmax was 866±233 ng/mL for 30-minute infusions and 634±97 ng/mL for 60-minute infusions. The steady-state AUC0-12h was 2349±850 ng•h/mL.



Biotransformation



On average, it is estimated that less than 20 % of tigecycline is metabolised before excretion. In healthy male volunteers, following the administration of 14C-tigecycline, unchanged tigecycline was the primary 14C-labelled material recovered in urine and faeces, but a glucuronide, an N-acetyl metabolite and a tigecycline epimer were also present.



In vitro studies in human liver microsomes indicate that tigecycline does not inhibit metabolism mediated by any of the following 6 cytochrome P450 (CYP) isoforms: 1A2, 2C8, 2C9, 2C19, 2D6, and 3A4 by competitive inhibition. In addition, tigecycline did not show NADPH-dependency in the inhibition of CYP2C9, CYP2C19, CYP2D6 and CYP3A, suggesting the absence of mechanism-based inhibition of these CYP enzymes.



Elimination



The recovery of the total radioactivity in faeces and urine following administration of 14C-tigecycline indicates that 59 % of the dose is eliminated by biliary/faecal excretion, and 33 % is excreted in urine. Overall, the primary route of elimination for tigecycline is biliary excretion of unchanged tigecycline. Glucuronidation and renal excretion of unchanged tigecycline are secondary routes.



The total clearance of tigecycline is 24 L/h after intravenous infusion. Renal clearance is approximately 13 % of total clearance. Tigecycline shows a polyexponential elimination from serum with a mean terminal elimination half-life after multiple doses of 42 hours although high interindividual variability exists.



Special populations



Hepatic Insufficiency



The single-dose pharmacokinetic disposition of tigecycline was not altered in patients with mild hepatic impairment. However, systemic clearance of tigecycline was reduced by 25 % and 55 % and the half-life of tigecycline was prolonged by 23 % and 43 % in patients with moderate or severe hepatic impairment (Child Pugh B and C), respectively (see section 4.2).



Renal Insufficiency



The single dose pharmacokinetic disposition of tigecycline was not altered in patients with renal insufficiency (creatinine clearance <30 mL/min, n=6). In severe renal impairment, AUC was 30 % higher than in subjects with normal renal function (see section 4.2).



Elderly Patients



No overall differences in pharmacokinetics were observed between healthy elderly subjects and younger subjects (see section 4.2).



Paediatric Population



The safety and efficacy of tigecycline in the paediatric population 8 to <18 years of age have not been established.



Tigecycline pharmacokinetics was investigated in two studies. The first study enrolled children aged 8-16 years (n=24) who received single doses of tigecycline (0.5, 1, or 2 mg/kg, with no dose limitation) administered intravenously over 30 minutes. The second study was performed in children aged 8 to 11 years (n=47) who received multiple doses of tigecycline (0.75, 1, or 1.25 mg/kg up to a maximum dose of 50 mg) every 12 hours administered intravenously over 30 minutes. No loading dose was administered in these studies. The pharmacokinetic parameters may be observed in the table below.




































Dose Normalized to 1 mg/kg Mean ± SD Tigecycline Cmax and AUC in Children


   


Age (yr)




N




Cmax (ng/mL)




AUC (ng•h/mL)*




Single dose



 

 

 


8 – 11




8




3881 ± 6637




4034 ± 2874




12 - 16




16




8508 ± 11433




7026 ± 4088




Multiple dose


   


8 - 11




47




1899 ± 2954




2833 ± 1557




* single dose AUC0-œ, multiple dose AUC0-12h


   


The target AUC0-12h in adults after the recommended dose of 100 mg loading and 50 mg every 12 hours, was approximately 2500 ng•h/mL.



Gender



There were no clinically relevant differences in the clearance of tigecycline between men and women. AUC was estimated to be 20 % higher in females than in males.



Race



There were no differences in the clearance of tigecycline based on race.



Weight



Clearance, weight-normalised clearance, and AUC were not appreciably different among patients with different body weights, including those weighing



5.3 Preclinical Safety Data



In repeated dose toxicity studies in rats and dogs, lymphoid depletion/atrophy of lymph nodes, spleen and thymus, decreased erythrocytes, reticulocytes, leukocytes, and platelets, in association with bone marrow hypocellularity, and adverse renal and gastrointestinal effects have been seen with tigecycline at exposures of 8 and 10 times the human daily dose based on AUC in rats and dogs, respectively. These alterations were shown to be reversible after two weeks of dosing.



Bone discolouring was observed in rats which was not reversible after two weeks of dosing.



Results of animal studies indicate that tigecycline crosses the placenta and is found in foetal tissues. In reproduction toxicity studies, decreased foetal weights in rats and rabbits (with associated delays in ossification) and foetal loss in rabbits have been observed with tigecycline. Tigecycline was not teratogenic in the rat or rabbit. Tigecycline did not affect mating or fertility in rats at exposures up to 4.7 times the human daily dose based on AUC. In female rats, there were no compound-related effects on ovaries or oestrus cycles at exposures up to 4.7 times the human daily dose based on AUC.



Results from animal studies using 14C-labelled tigecycline indicate that tigecycline is excreted readily via the milk of lactating rats. Consistent with the limited oral bioavailability of tigecycline, there is little or no systemic exposure to tigecycline in the nursing pups as a result of exposure via maternal milk.



Lifetime studies in animals to evaluate the carcinogenic potential of tigecycline have not been performed, but short-term genotoxicity studies of tigecycline were negative.



Bolus intravenous administration of tigecycline has been associated with a histamine response in animal studies. These effects were observed at exposures of 14 and 3 times the human daily dose based on the AUC in rats and dogs respectively.



No evidence of photosensitivity was observed in rats following administration of tigecycline.



6. Pharmaceutical Particulars



6.1 List Of Excipients



Lactose monohydrate



Hydrochloric acid, sodium hydroxide (for pH adjustment)



6.2 Incompatibilities



The following active substances should not be administered simultaneously through the same Y-site as Tygacil: Amphotericin B, amphotericin B lipid complex, diazepam, esomeprazole, omeprazole and intravenous solutions that could result in an increase of pH above 7.



This medicinal product must not be mixed with other medicinal products except those mentioned in section 6.6.



6.3 Shelf Life



2 years.



Once reconstituted and diluted in the bag or other suitable infusion container (e.g. glass bottle), tigecycline should be used immediately.



6.4 Special Precautions For Storage



Store below 25°C.



For storage conditions of the reconstituted product see section 6.3.



6.5 Nature And Contents Of Container



5 ml Type 1 clear glass vials fitted with grey butyl rubber stoppers and snap-off aluminium crimp seals. Tygacil is distributed in a ten vial tray pack.



6.6 Special Precautions For Disposal And Other Handling



The lyophilised powder should be reconstituted with 5.3 ml of sodium chloride 9 mg/ml (0.9 %) solution for injection, dextrose 50 mg/ml (5 %) solution for injection, or Lactated Ringer's solution for injection to achieve a concentration of 10 mg/ml of tigecycline. The vial should be gently swirled until the medicinal product is dissolved. Thereafter, 5 ml of the reconstituted solution should be immediately withdrawn from the vial and added to a 100 ml intravenous bag for infusion or other suitable infusion container (e.g., glass bottle).



For a 100 mg dose, reconstitute using two vials into a 100 ml intravenous bag or other suitable infusion container (e.g., glass bottle). Note: The vial contains a 6 % overage. Thus, 5 ml of reconstituted solution is equivalent to 50 mg of the active substance. The reconstituted solution should be yellow to orange in colour; if not, the solution should be discarded. Parenteral products should be inspected visually for particulate matter and discolouration (e.g., green or black) prior to administration.



Tygacil may be administered intravenously through a dedicated line or through a Y-site. If the same intravenous line is used for sequential infusion of several active substances, the line should be flushed before and after infusion of Tygacil with either sodium chloride 9 mg/ml (0.9 %) solution for injection or dextrose 50 mg/ml (5 %) solution for injection. Injection should be made with an infusion solution compatible with tigecycline and any other medicinal product(s) via this common line. (See section 6.2.)



This medicinal product is for single use only; any unused solution should be discarded.



Compatible intravenous solutions include: sodium chloride 9 mg/ml (0.9 %) solution for injection, dextrose 50 mg/ml (5 %) solution for injection and Lactated Ringer's solution for injection.



When administered through a Y-site, compatibility of Tygacil diluted in sodium chloride 0.9 % for injection is demonstrated with the following medicinal products or diluents: amikacin, dobutamine, dopamine HCl, gentamicin, haloperidol, Lactacted Ringers's, lidocaine HCl, metoclopramide, morphine, norepinephrine, piperacillin/tazobactam (EDTA formulation), potassium chloride, propofol, ranitidine HCl, theophylline, and tobramycin.



7. Marketing Authorisation Holder



Wyeth Europa Ltd.



Huntercombe Lane South



Taplow, Maidenhead



Berkshire, SL6 0PH



United Kingdom



8. Marketing Authorisation Number(S)



EU/1/06/336/001



9. Date Of First Authorisation/Renewal Of The Authorisation



Date of first authorisation: 24 April 2006



Date of last renewal: 06 May 2011



10. Date Of Revision Of The Text



27 October 2011



Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu/



Ref TL 5_0




No comments:

Post a Comment